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Abstract

(903) Nealley moves on an orbit of low eccentricity with a mean motion that is slightly
larger than the 2/1 value of resonance. This orbit and some related fictitious orbits are
studied by numerical integrations of the four-body problem Sun-Jupiter-Saturn-asteroid
over an interval of 110000 yr. The author’s experience on related cases of resonance
allows a study of the variation of suitably defined orbital parameters. The long-term
evolution of the orbits is compared with earlier predictions. Some of the librating orbits
are temporarily captured in a secondary resonance that refers to three-dimensional motion
and is demonstrated by a special example.
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1 Introduction

The evolution of asteroidal orbits in the vicinity of the 2/1 Jovian resonance of mean motion
is a subject of continuing interest, see the references given in the respective section of a related
paper by Yoshikawa (1991). Many studies on this subject depend on the elliptic restricted
three-body problem Sun-Jupiter-asteroid treated in two or three dimensions, but Yoshikawa
(1991) points to the importance of including the action of Saturn in the model of the forces,
especially in work on the 2/1 Kirkwood gap. It is comparatively easy to consider both Jupiter
and Saturn in studies that use numerical integration to derive the motion of massive and small
bodies in a simultaneous computation. | have done this in work on resonant motion in the
outer asteroid belt, especially on the 3/2 case (Schubart 1988, 1991). During this work I
have noticed that the special numerical methods of studying single orbits are applicable to
some low-eccentricity orbits near the 2/1 resonance as well, in particular to the orbit of (903)
Nealley (Schubart 1988). Now I apply the former methods and experience in a detailed study
of this orbit that is situated at the sunward border of the Kirkwood gap in the frequency
distribution of semi-major axis. This orbit shows a quasi-periodic behaviour in the interval
considered. The same turns out for some related fictitious orbits that are closer to the center
of the gap, but seem to have no natural counterparts (compare with Wisdom 1987). In a
continuation toward the center of the gap, four further orbits clearly show a non-quasiperiodic
behaviour. Frequent changes in the ratio of characteristic long periods appear to be a typical
feature of these orbits, that show libration of variable amplitude and temporary capture by
a secondary resonance.



2 Numerical Procedures

In the present study I closely follow the definitions and procedures introduced in an earlier pa-
per (Schubart 1988). As before, the integrations of the problem Sun-Jupiter-Saturn-asteroid
have resulted from the N-body program by Schubart and Stumpff (1966). All integrations
cover an interval of 110000 yr centered close to the present. | have extended the former in-
tegration for (903) Nealley (Schubart 1988) by adding a backward computation in the model
‘i # 0’ that considers the mutual inclination of the orbits of the massive planets. However,
the recent integrations on fictitious 2/1 orbits depend on the model ‘4 = 0’ which neglects
this mutual inclination. Then Jupiter and Saturn move in the plane of reference that is de-
fined to agree with the real orbital plane of Jupiter at a special epoch. In this model, the lack
of long periods that are otherwise caused by the moving planes of the major bodies, allows
special applications (see section 3).

As before, I use the symbols a, e, i, £ for semi-major axis [AU], eccentricity, inclination
and mean longitude. w and € are the longitudes of perihelion and node. The subscript J
refers to an element to Jupiter. The critical argument of the 2/1 resonance is given by o =
207 —f— w. Again I can use an empirical transformation

ep cos (wp, —wy) = ecos (w—wy) —K €y;

ep sin (w, —wy) = esin (w— wy);

=0+ w— @,
to new variables e,, @w,, @ with a constant x that is suitably chosen for each orbit. x can
roughly be fitted in such a way that it approximately removes the asymmetric location with
respect to the origin of a corresponding curve plotted in e cos (w — wy), € sin (w — wy)
coordinates, in the analogous new coordinates. A final adjustment can simplify the resulting
variations of 7@, see section 3. k remains comparatively small in the present applications. In
this way 1 try to remove a part of the influence of the eccentricities of the major bodies from
e, @, and o, so that results on the new variables allow a better comparison with analogous
results obtained by the circular restricted problem. For example | have found evidence of
a permanent libration of & for Nealley in this way (Schubart 1988). Proper parameters are
given by €,, a mean value of e, i,, here a mean value of 7, and &4, the mean amplitude
of the oscillation caused in @ by the typical period of libration, T;. 1 have earlier used
these parameters to characterize resonant orbits that show libration of @ and a quasiperiodic
behaviour (Schubart 1991). For low-eccentricity orbits, an additional parameter A is useful
to describe the main variations of e, and @, (Schubart 1991, section 4). For instance, e,
approximately equals the length of a two-dimensional vector given by the sum of a constant
vector of length €, and of a shorter vector of length A with uniform rotation according to
Ty,. Let @ be a mean value of a that refers to the interval covered by integration in general. |
apply digital filtering in the derivation of all these parameters, see Schubart and Bien (1984)
and Schubart (1991).

3 Orbital Evolution of Nealley and some Related Examples of
Motion

The way of starting the computation for (903) Nealley resembles my earlier procedures
(Schubart 1990, 1991). The starting epoch is JDE 2446000.5. The starting elements of
Jupiter and Saturn correspond to Table 1 of Schubart (1990), but the orbit of Saturn is ro-



Table 1: Starting values, parameters, and periods

N=(903) A B C D D
o 3.2317  3.240 3.243  3.249 3.255 3.261  [AU]
o 0.0701  0.042  0.043  0.046  0.050  0.056
K 0.26  0.18  0.163 0.125 0.08  0.04
e 0.034  0.034 0.036 0.042 0.049  0.057
A 0.026  0.005 0.005 0.006 0.006 0.005
i 11°20  11.14 1114 1114 1114 11°13
oA 54° 10 10 10 10 9°
a 3.2387 3.2395 3.2420 3.2468 3.2514 3.2556  [AU]
Tr, 308.4 3132 3304 366.9 403.3 4352 [yr]
Tp 342.4  349.2 3753 4386 5189  625.8 [yr]
Tn 180 183 185 192 20.0  21.4 [10%r]

Notes to Table 1. The starting values ap and ey of (903) Nealley and of 5 fictitious orbits refer
to a common epoch in the comparatively near future. For the numerical constant x and the
following parameters see section 2. 'y, is the period of libration. A mean value is given. The
mean periods of the retrograde revolution of the arguments @, — @y and € are designated
by T'p and Ty, respectively.

tated to approximate the real inclination. The forward integration brings ¢ of Nealley close
to zero at an epoch that is later by 117.64 yr. I use this second epoch and the corresponding
result for Nealley to start the integration of the fictitious orbits with similar values of the
angular variables that are close to @ — w; = 337°, Q — w; = 148°,2 = 11?1, ¢ = 0°. | turn
the orbital planes of the major planets into the plane of reference at the second epoch for
this integration. Then, | vary the starting value of a, ay, away from the orbit of Nealley,
N, to obtain a sequence of orbits A, B, ---, E that approaches the center of the Kirkwood
gap. In each case I adjust the starting value of e, ey, to obtain a comparatively small effect
of libration of @ with @4 near 10°. Table 1 lists ay and eg, referred to the second epoch,
the derived proper parameters and other values of interest, especially mean periods. Note
that the periods Tp and Ty correspond to the mean retrograde revolution of the arguments
wp,—wy and €. Fig.1 demonstrates the relation between €, and @. « oscillates about @ in case
of orbits N and A, B, .-, K, and all the other considered variations indicate a quasi-periodic
evolution of these orbits, although orbit E shows comparatively large shifts of a period related
to Tr,. This behaviour suddenly changes, if T try to continue the sequence of orbits beyond E
with values of ag from 3.263 to 3.267 AU. Four examples started with such values of ag show
irregular variations of a and other effects that clearly indicate a non-quasiperiodic evolution,
see section 4.

In the derivation of the proper parameters shown in Table 1 I have applied the methods
for the main case of Hilda motion to @4 and i,, but a special method for small e, to €, and
A (Schubart 1991). The frequencies resulting in this method allow the derivation of Ty, and
Tp. In an attempt to determine @4 by digital filtering, a band of frequencies passes the filter
together with the one that corresponds to I'y,. Therefore, a changing amplitude of @ appears
in a plot versus time, but a final adjustment of x leads to a sufficiently small variation in this
amplitude. Along the sequence of orbits A to E, k shows a tendency to approach zero, but



Figure 1: Mean values of semi-major axis [AU] versus €,, a proper parameter related to
eccentricity. a = 3.276 AU corresponds to the 2/1 ratio of the mean motions of asteroid and
Jupiter. N refers to the orbit of (903) Nealley. The letters from B to E represent fictitious
orbits that show small effects of libration. A fifth orbit of this kind, A, closely corresponds
to the position of the letter N in the figure.

this can be a particular feature for values of i, near 11° and small 4. Among other effects, I
remove by digital filtering from @ an oscillation that apparently follows a frequency given by
the difference of the absolute values of the frequencies that correspond to Ty, and Tp. I did
not notice such an effect during my former work on Hildas. In case of Nealley, the amplitude
of this effect changes from about 6° to 3°, following the cycle of the long-period variation of
ey. I assume that this amplitude is roughly proportional to both e; and A, according to the
smaller variations of this kind shown by orbits A, B, and C.

In applying my method of derivation of i,, I remove a periodic term that follows the mean
period of revolution of the argument 2 2—2w 7, from the filtered results on i, if this is neces-
sary due to the length of this period. In doing so for orbits A to E, I noticed an additional
effect depending on the mean period of the argument 2 2 — w; — wg with an amplitude of
less than 0°05. Here the suffix S refers wg to Saturn. The use of the model ‘ig= 0’ for these
orbits and the corresponding lack of other very long periods has allowed these small effects
to show up in my graphs. Effects of this kind are more important for the variations of i of
Trojan asteroids, see Fig. 3a of Schubart and Bien (1986).



4 Non-Quasiperiodic Types of Motion and Comparison with
other Work

In Fig.1 the sequence from B to K corresponds to orbits with small effects of libration.
Evidently, the sequence A, B, - -, E develops in analogy to the pericentric branch of periodic
orbits of the circular restricted problem, see Fig.3a of Morbidelli and Giorgilli (1990). In this
context it is interesting to follow the evolution of the four examples with non-quasiperiodic
motion started close to orbit E, see section 3. I study them with k = 0, according to the
small value found for orbit K. This means the use of the original elements e, @, and of o. The
study shows for the four examples a continuing status of libration of o with | o |< 100°, but
with strong fluctuations of the amplitude, in the considered interval. The strong irregular
variations of a and e are correlated. During limited periods the mean values of a and e of an
orbit roughly correspond to members of the pericentric branch mentioned above.

The importance of secondary resonances for the evolution of 2/1 resonant orbits was
pointed out by Lemaitre and Henrard (1990), see Fig. 3b of Morbidelli and Giorgilli (1990).
According to Table 1, the ratio Tp/ T, develops from values near 1.1 to 1.44, the value of orbit
E, and passes rational values of interest. Fortunately, the orbit started next to E with ag =
3.263, eg = 0.0585 shows comparatively smooth variations during a large part of the backward
computation, which includes the starting epoch. Tp/ T equals about 1.52 in this interval.
Maybe the proximity to 3/2 of the ratio Tp/ Ty, gives rise to the wild evolution of this orbit.
The same can turn out in much more extended computations on orbit K. It is interesting
to note that the onset of non-quasiperiodic types of motion found here, qualitatively agrees
to the predictions on the structure of the 2/1 resonance by Murray (1986), who has used a
simplified model of the three-body problem and a mapping technique in his work. | think that
his simplified model approximates the conditions of low-eccentricity motion, but his model
is a planar one. Wisdom (1987, p.268) has demonstrated by the numerical integration of an
orbit with ey = 0.05, that the transition from a three-body problem to a model with four
major planets can change predictions on the structure of the 2/1 resonance.

I have studied the evolution of a, e, and ¢ of the four examples with ay beyond 3.261 AU
by means of smoothed curves, eliminating the influence of all periods that are less than about
6000 yr, see Fig.2 for e. The following results refer to temporary mean values taken from
these curves. An increase and subsequent strong changes of a are apparently triggered by the
increase of e; to a maximum in the forward direction of time. e follows with increase and
correlated variations in each case. The librating orbits travel about in an a, e domain that
contains, for the ratio Tp/Tz, the typical 2/1 and 3/1 secondary resonances. The smoothed
values of a and e reach 3.270 AU and 0.127 with Tp/Ty, temporarily near 4/1 in one of the
cases. | note that the respective backward computation even shows proximity to the 5/1 ratio
of Tp/ Ty at its end. 1 have observed original values of e of up to 0.19.

In the more remote future ey goes down to reach a minimum. At about this time the
smoothed values of @ and e of all the four examples show a tendency to approach a domain
with a near 3.262 and e close to or a little less than 0.08. In Fig. 1 this corresponds to the
upper part of the right border. However, the simultaneous smoothed results on ¢ approach
different values in the interval from 1029 to 13°1. This tendency typically appears in case of
an orbit started near E with ap = 3.264, eg = 0.0598. Since I suspected the influence of a
special type of secondary resonance given by the 2/1 ratio of the mean period of revolution of
w=w-Qand 17, | have plotted e sin 2w versus e cos 2w for the respective interval, without



Figure 2: Four curves smoothed by digital filtering and plotted against time, demonstrate the
non-quasiperiodic evolution of the eccentricity of orbits started in an attempt to continue the
sequence from A to E. The bars at the upper and lower border indicate maxima and minima
of ey, respectively. Note the approach of the curves to the level e = 0.08 near the lower right
bar. The respective starting values aq [AU] and e of the four orbits are

3.263  0.0585 : heavy line, 3.264  0.0598 : thin line,

3.265 0.0611 : dashed line, 3.267 0.0640 : dotted line.



smoothing. A polar plot for e and 2w results in this way. Neglecting short-period variations,
I find the subsequent directions from the origin to the maxima of e to librate with a large
amplitude about the zero direction of 2w temporarily. | get the same temporary libration
of the directions for all of the four examples near the considered moment of time, and for a
related orbit integrated in a simpler model (see below and Fig. 3). This libration corresponds
to the evolution of a fictitious Hilda-type orbit studied earlier (see Fig. 2 of Schubart 1990).
Here the typical example with ag = 3.264 shows a period of libration of the direction to the
maxima of e of about 3500 yr. w decreases with a temporary period that varies about 1000 yr
under the influence of the longer period, which simultaneously causes considerable changes in
the mean of e of a cycle of o libration. This mean varies between 0.100 and 0.055 according to
the period of 3500 yr, and the largest maxima of e reach 0.14. Apparently the influence of the
considered type of secondary resonance becomes strong during periods of small e;. Perhaps
the periodic repetition of such periods can prevent the escape of e to very large values during
longer intervals, in case of my four examples with a non-quasiperiodic type of motion, if basic
libration according to a period 'z, continues to occur. However, forbidden regions and further
restrictions used by Froeschlé and Scholl (1976) for an ergodic orbit of a simplified model,
are not available for the present results, due to the more complicated model of the forces.
Wisdom (1987, p.269) has mentioned results of an extended integration with perturbations
of the four major planets for some 2/1 orbits of special interest. One of these orbits reaches
a maximum eccentricity of 0.53 and demonstrates the possibility of large long-period changes
in inclination. As visible from his Fig.19, this interesting orbit starts with ¢y = 0.1 and a
comparatively small inclination. According to this and to the initial part of its evolution,
that orbit is not closely related to the fictitious orbits considered in the present paper.

To demonstrate the special type of secondary resonance considered above by a compar-
atively simple example, 1 use starting values from a forward integration over an interval of
36505 yr of the orbit with the original starting values ay = 3.264, ¢y = 0.0598. 1 continue
the integration with the following simplifications and changes: The mass of Saturn and the
eccentricity of Jupiter are neglected, the zero direction of longitude is changed. 1 start the
continuation with ay = 5.20282 AU, £; = 0°, and with @ = 305%9, Q@ = 162%6, : = 1373,
a = 3.254, e = 0.092, £ = 15°4. o librates in the continuation with an amplitude that changes
between about 40° and 78°. Fig. 3 refers to a part of this continuation and indicates a 1/1
ratio of the mean period of revolution of 2w and of the period of libration that causes the
sequence of maxima of e. A libration of the direction from the origin to subsequent maxima
of e about the zero direction of 2w is visible. During a cycle of this libration of direction large
mean values of e occur together with a large amplitude of libration of ¢, but the inclination
is comparatively small at the respective phase of this cycle.
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